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Abstract

We discuss some problems with the large Nc approximation for nucleons which arise
if the axial coupling of the nucleon to pions is large, gA ∼ Nc. While gA ∼ Nc in non-
relativistic quark and Skyrme models, it has been suggested that Skyrmions may
collapse to a small size, r ∼ 1/fπ ∼ Λ−1

QCD/
√
Nc. (This is also the typical scale over

which the string vertex moves in a string vertex model of the baryon.) To construct
a nucleon with a small axial coupling we suggest that most quarks are bound into
colored scalar diquarks. For odd Nc, this leaves one unpaired quark, which carries the
spin and isospin of the nucleon. If the unpaired quark is in a spatial wavefunction
orthogonal to the wavefunctions of the scalar diquarks, then up to logarithms of
Nc, the unpaired quark only costs an energy ∼ ΛQCD. This naturally gives gA ∼ 1
and has other attractive features. In nature, the wavefunctions of the paired and
unpaired quarks might only be approximately orthogonal; then gA depends weakly
upon Nc. This dichotomy in wave functions could arise if the unpaired quark orbits
at a size which is parametrically large in comparison to that of the diquarks.
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1 Introduction

The large Nc limit of ’t Hooft [1] for the description of baryons has been
developed by Adkins, Nappi and Witten [2]. In this limit, the nucleon is a
topological excitation of the pion field, where the pion field is described by a
non-linear sigma model plus a Skyrme term [3]. This topological excitation is
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described by a stable soliton solution of size r ∼ 1/ΛQCD, which is a Skyrmion;
ΛQCD is a mass scale typical of the strong interactions.

The action of the Skyrmion is ∼ Nc, and so it contains of order Nc coherent
pions. In the Skyrme model, the nucleon pion coupling constant is enhanced
from its naive value, gπNN ∼

√
Nc, which arises from counting the number

of quarks inside a nucleon, to become gπNN ∼ N3/2
c . This is a consequence

of the coherent nature of the pions which compose the Skyrmion. By the
Goldberger-Treiman relation [4], the axial coupling gA is then of order Nc.
Such a strong axial coupling generates strong spin-isopin dependent forces,
of order Nc, out to distances which are large in comparison to the size of
the nucleon, ∼ 1/ΛQCD. In the limit of massless pions, these interactions are
of infinite range. In Monte-Carlo computations of the nucleon-nucleon force
on the lattice, no strong long range tails are seen; indeed, even at interme-
diate ranges the forces do not appear to be large [5] (Some cautions on the
interpretation of lattice results were raised in [6]). In addition, the magnetic
moment of the proton would be of order Nc, which would also generate strong
electromagnetic interactions [7].

Such a description of the nucleon at infinite Nc appears to be rather diffferent
from what we observe for Nc = 3. At finite Nc, these problems might be fixed
by a fine tuning of parameters. For example, in the Skyrme model description
of Ref. [2], the parameter 1/e2 that controls the strength of the Skyrme term,
and which stabilizes the Skyrmion at a non-zero radius, should be of order Nc.
To provide a phenomenologically viable description of the nucleon for Nc = 3,
though, it is taken to be 3.3× 10−2.

Another generic problem is the nature of nuclear matter. Some of the channels
for the long distance spin-isopin dependent forces are attractive. This means
that the ground state of nuclear matter is a crystal and the binding energy
is of order NcΛQCD [8]. On the other hand, ordinary nuclear matter is very
weakly bound, with a binding energy δE ∼ 16 MeV [9]. This number seems to
be closer to ΛQCD/Nc than to NcΛQCD, the value typical of a Skyrme crystal.
Moreover, nuclear matter appears to be in a liquid state, and not a crystal.

An excellent discussion of the properties of the nucleon-nucleon force is found
in Ref. [10–12]. Many of the relationships derived there are generic relation-
ships between the magnitudes of various forces, and these seem to work quite
well. Thus it is somewhat of a mystery why the large Nc limit for baryons can
work well in some contexts, but provide qualitative disagreement in others.

Yet another problem is the mass splitting between the nucleon and ∆. Con-
sistency conditions at large Nc and standard large Nc counting indicate that
this mass difference is ∼ ΛQCD/Nc [10,11]. In QCD, though, it is ∼ 300 MeV,
which is ∼ ΛQCD.
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A large value of gA also generates problems in writing a chiral effective theory
for the nucleon. In the linear sigma model, chiral symmetry implies that there
is a large coupling to the sigma meson, gσNN = gπNN ∼ N3/2

c . Such a large
coupling generates self-energy corrections to the nucleon that would be larger
than Nc. In addition, if the axial coupling is of order Nc, self-interactions asso-
ciated with an axial-vector current should result in a significant contribution
to the nucleon mass. If there is some way to lower the axial coupling, which
does not greatly increase the mass of the nucleon, then it is plausible that
nature would realize this possibility.

Ultimately, large self-energies for the nucleon might destabilize a nucleon of
size ∼ 1/ΛQCD. One might be tempted to argue that this cannot happen in
QCD, since the action in QCD is of order Nc, and a collapsed soliton, with a
size other than ΛQCD, should have a mass which is not linear in Nc. This would
be a strong argument if the nucleon appeared as a purely classical solution of
the QCD equations of motion, as a Skyrmionic soliton for example. Following
others, however, we suggest that the Skyrmionic soliton may collapse [13–17].
If so, at short distances the nucleons are more naturally described by quarks
rather than by coherent pions. The quarks cannot collapse to a small size
without paying a price of order Nc/R in quark kinetic energy. The relevance
of quark descriptions inside of the nucleon was also emphasized in [18].

A key observation in this paper is that such consistuent quarks are the main
origin of the axial charge gA, which is the source of pion fields. If Nc consistuent
quarks have a small axial charge, gA ∼ 1, then the problems related to large
coherent pions will be solved.

We suggest such a nucleon wavefunction. Most quarks are bound into colored
diquarks [19]. For odd Nc, that leaves one unpaired quark. We then put that
unpaired quark into a wavefunction which is approximately orthogonal to those
of the paired quarks. This can be accomplished by making the spatial extent
of the unpaired quark larger than that of the paired diquarks: it is “dichoto-
mous”. Putting the additional quark into such a wavefunction costs an energy
of order ΛQCD, up to logarithms of Nc (as we show later). Such a construction
results in small self-energies from the pion-nucleon self-interactions, as a result
of gA ∼ 1. It is also clear that long-range nucleon-nucleon interactions are no
longer strong.

This is a minimal modification of the naive non-relativistic quark model of
the nucleon. There quarks are paired into diquarks, save for one quark that
carries the quantum numbers of the nucleon. It is usually assumed, however,
that all of the quarks, paired or not, have the same spatial wavefunction. This
gives gA = (Nc + 2)/3, and the problems discussed above [7,20].

A trace of the collapsed Skyrmion might appear at a scale size of order 1/fπ.
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This size corresponds to the intrinsic scale of a quantum pion. Since fπ ∼√
NcΛQCD at large Nc, the size of the nucleon shrinks to zero as Nc → ∞.

We will also show that such a small size naturally arises in a string vertex
model of the nucleon, as the root mean square fluctuations in the position
of the string vertex. Of course, the contribution of the string vertex to the
mass of the nucleon is of order fπ, as most of the mass of the nucleon is
generated by a cloud of quarks and quark-antiquark pairs surrounding the
collapsed Skyrmion, or string vertex. The picture we develop has some aspects
in common with bag models [21], and particularly the hybrid descriptions of
Brown and Rho [22,23].

The collapsed Skyrmion we conjecture has some features which are similar to
the nucleon in the Sakai-Sugimoto model [24]. They suggest that the Skyrmion,
computed in the action to leading order in strong coupling, is unstable with
respect to collapse. It is stabilized by ω vector meson interaction, which is of
higher order correction in strong coupling. It is argued that the nucleon has
a size of order 1/(

√
g2NcΛQCD). The methods used to derive this result are

questionable at sizes � 1/ΛQCD, but at least this shows that there is a small
object in such theories. It is quite difficult for ω exchange or other strong
coupling effects to stabilize the nucleon once it acquires a size much less than
1/ΛQCD. The basic problem is that mesons will decouple from small objects
due to form factor effects. Without form factors, the ω interaction generates
a term ∼ 1/R, which resists collapse; form factors convert this into a factor
of ∼ R, which is harmless as R shrinks to zero.

The outline of this paper is as follows: In Sec. 2 we review the sigma model
and its predictions for nucleon structure. We show that its predictions for the
large Nc properties of the nucleon are at variance from the large Nc limit
predicted for a Skyrmion of size ∼ 1/ΛQCD. In Sec. 3 we discuss the general
form of nucleon-nucleon interactions in the sigma model and in the Skyrme
model. In Sec. 4 we argue that the Skrymion might collapse to a size scale of
order 1/fπ [13–17]. In Sec. 5 we discuss the string vertex model of Veneziano
[25]. In particular, we argue that the spatial extent of the string vertex is
typically of order 1/fπ, which is the minimal size for the string vertex. Such
a vertex might be thought of as the localization of baryon number. Quarks
attached to the ends of strings will nevertheless have a spatial extent of order
1/ΛQCD to avoid paying a huge price in quark kinetic energies. In Sec. 6 we
compute the contribution to gA arising from quarks. Using the non-relativistic
quark model, we find that if we make the wavefunction of those quarks paired
as diquarks, and that of the unpaired quark have a small overlap, then gA
is parametrically smaller in Nc than the canonical value of gA = (Nc + 2)/3.
An explicit computation of gA and the magnetic moments for such a variable
overlap is carried out in Appendix A and B. In Sec. 7 we present arguments
about how, dynamically, such a small overlap might be achieved. Sec. 8 is a
summary.
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2 The Sigma Model

Let us begin by reviewing how the long range nucleon-nucleon interaction
depend on Nc in the sigma model. The linear sigma model is written in the
form

S=
∫

d4x

{
1

2
(∂µσ∂

µσ + ∂µπ
a∂µπa)− µ2

2
(σ2 + (πa)2) +

λ

4
(σ2 + (πa)2)2

+ψ(−i/∂ + g(σ + iπ · τγ5))ψ
}
, (1)

where ψ denotes the nucleon field. Our metric convention is g00 = −1. The
naive arguments of large Nc QCD would have the mass term µ of order ΛQCD,
the four meson coupling λ ∼ 1/Nc, and the pion nucleon coupling g ∼ √Nc.

Upon extremizing the action, we find that Mσ ∼ µ, Mπ = 0, MN ∼ gµ/
√
λ ∼

Ncµ. Therefore the typical large Nc assignments of couplings are consistent
with the nucleon mass being of order Nc, the sigma mass of order one, and
a weakly coupled pionic and sigma system. Note that the sigma is strongly
coupled to the nucleon, consistent with large Nc phenomenology.

What about the pion coupling? It is naively of order
√
Nc but the γ5 matrix,

because of the negative parity of the pion, suppresses pion emission when the
momentum of the pion is much less than that of the nucleon. A non relativistic
reduction of the pion nucleon interaction gives

gπaψτ
aγ5ψ ∼ g

2MN

(∂µπ
a)ψτaγµψ. (2)

This equation means that one pion emission is not of order
√
Nc at long

distances, but of order 1/
√
Nc. Thus the potential due to one pion exchange

is of order 1/Nc, and not of order Nc.

One might object that in higher orders this is not true, since one might expect
the non-relativistic decoupling of the pions would disappear when one consid-
ers two pion exchange. If one considers the diagram in Fig. 1, this contribution
is naively of order Nc. The sum of the two diagrams cancel to leading order
when q, k � M , making it again naively of order one. However, when the
diagram in Fig. 2 is included, which is also of order one in powers of Nc, there
is a cancellation with the above two diagrams when the momentum of the
pions is small compared to µ. When all is said and done, we conclude that
for momentum small compared to the QCD scale, the interaction is of order
1/Nc. This corresponds to a suppression of 1/

√
Nc for each pion emitted.

In fact, Weinberg proves by an operator transformation on the sigma model
action, that this cancellation persists to all orders in perturbation in the theory,
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q k

p p − q p − q − k

(a) q k

p p − q − kp − k

(b)

Fig. 1. a: One of the two pion exchanges. b: The crossed diagram.

and that pion emission when soft is always suppressed by 1/
√
Nc for each

emitted pion [26].

q k

p p − q − k

Fig. 2. Two pions produced by sigma exchange.

This conclusion about the strength of the nucleon force is consistent with what
we know about nuclear matter. Nuclear matter is weakly bound, and has a
binding energy which is of order Λ2/MN ∼ 1/Nc. Such a parametric depen-
dence on Nc is seen in nuclear matter computations where pion exchange is
augmented by a hard core interaction [27]. The hard core interaction presum-
ably arises when momentum transferred is of order ΛQCD, and interactions
become of order one in powers of Nc. In nuclear matter computations, the
hard core essentially tells the nucleons they cannot go there, and its precise
form is not too important.

It is useful to consider the non-linear sigma model, as this is the basis of
the Skyrme model treatment. The non-linear sigma model is essentially the
infinite sigma particle mass limit of the linear sigma model. It should be valid
at distance scales much larger than 1/ΛQCD, which is also the range of validity
of the linear sigma model. The action for the non-linear sigma model is

S =
∫

d4x
{
f 2
π tr ∂µU∂

µU † + Ψ
(
−i/∂ +MU

)
Ψ
}
. (3)

In this equation,
U = eiτ ·π/fπ , (4)

and
U = eiτ ·πγ

5/fπ , (5)

where fπ ∼
√
NcΛQCD, and the nucleon mass M ∼ NcΛQCD.
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Weinberg’s trick is to rotate away the interactions in the mass term by a chiral
rotation,

U → V −1/2UV −1/2 = 1. (6)

After this rotation of the nucleon fields, the action becomes,

S =
∫

d4x
{
f 2
π tr ∂µU∂

µU † + Ψ
(

1

i
γµ(∂µ + γ5V 1/2∂µV

−1/2) +M
)

Ψ
}
. (7)

We do not need to know the explicit form of V to extract the essential physics.
The point is that the expansion in powers of the pion-nucleon interaction
involves a factor of 1/

√
Nc for each power of the pion field. This arises because

the coupling to the pions is a derivative coupling, and to get the dimensions
right each power of the derivative times the pion fields must be accompanied
by a factor of 1/fπ. Notice also that the first term in the expansion of the pion
field is 1/fπ, and couples to the nucleonic axial-vector current. The nucleonic
axial-vector current is one for free fermions, and the interactions in this theory,
corresponding to decreasing powers of 1/

√
Nc, do not change the parametric

dependence upon Nc.

While in these models above gA ∼ 1, it is possible to obtain gA ∼ Nc by
the addition of further terms to the effective Lagrangian. In the linear sigma
model, consider adding a term [28,29]

g̃

Λ2
QCD

(
ψL

(
Φ†/∂Φ

)
ψL + ψR

(
Φ/∂Φ†

)
ψR
)
. (8)

Here ψL,R are chiral projections of the nucleon field, and Φ transforms under
SUL(2)× SUR(2). This term is non-renormalizable, with the coupling having
an overall dimension of inverse mass squared. We take this mass scale to be
ΛQCD, so the coupling g̃ is dimensionless. Taking Φ ∼ fπU , this term generates
an axial vector coupling of the pion to the nucleon, and gA ∼ Ncg̃; see, e.g.,
Eqs. (19.5.48), (19.5.49), and (19.5.50) of Ref. [29].

Thus if we allow the addition of non-renormalizable terms to the linear sigma
model, gA can be treated as a free parameter. Our point, however, is that if
one takes gA ∼ Nc, then at large distances, where the nucleon-nucleon interac-
tion is determined by pion exchange, that the corresponding interactions are
strong, ∼ Nc. While certainly logically possible, this does not agree with the
phenomenology of nucleon scattering, which sees no long range tails which are
large in magnitude [5].
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3 The General Structure of the Nucleon-Nucleon Force in the
Sigma Model and the Skyrme Model

It is useful to compute the general form of the nucleon-nucleon force in both
the Skyrme model and the sigma model. Let us first consider the Skyrme
model,

Sskyrme =
∫

d4x

{
f 2
π

16
tr ∂µU∂

µU † +
1

32e2
tr [∂µU, ∂νU ]2

}
. (9)

The last term in this equation is the Skyrme term. It has a coefficient 1/e2

that is assumed to be of order Nc, and is positive. There is a topological
winding number in the theory, and this winding number can be related to
the total baryon number by an anomaly. The nucleon corresponds to the
solution with winding number one. The size of the baryon is found to be
Rbaryon ∼ 1/

√
efπ ∼ 1/ΛQCD, and is independent of Nc. If the Skyrme term

were zero or negative, the solution would collapse to zero size.

The two nuclear force is derived by considering a two Skyrmion solution and
computing the energy of separation [30]. Since if we simply redefine scale
sizes in the Skyrme action by defining a dimensionless pion field as π′ =
π/fπ, and rescaling coordinates by ΛQCD, the Skyrme action becomes explicitly
proportional toNc when all dimensional quantities are so expressed. Therefore,
the potential between to nucleons is of the form

Vskyrme(r) ∼
Nc

r
Fskyrme(ΛQCDr). (10)

This is clearly inconsistent with the result one gets from the Weinberg action.
Here the lowest order diagram which contributes at distances much larger than
1/ΛQCD is due to one pion emission. Its strength is of order 1/r(rfπ)2 ∼ 1/Nc.
In the Skyrme model this difficulty is evaded by arguing that the strength of
the axial coupling is of order Nc rather than of order one. Since the derivative
of the pion field couples to the axial-vector current, and in the potential, there
are two such vertices, one can get a long distance force of order Nc. Therefore
the strong force due to pion exchange at long distances and the large value of
the axial coupling in the Skyrme model are related.

It is useful to understand the nature of the potential in the sigma model, due
to higher order pion exchanges. First, let us look at the contributions to the
potential. Note that if the vertices were not derivatively coupled, each pion
exchange would bring in a factor of 1/r. Due to the derivative coupling at the
vertices, there are two derivatives for each exchange. There is also a factor of
1/f 2

π . This means the potential predicted by the non-linear sigma model is of
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the form

Vσ =
1

r
Vσ(fπr). (11)

Note that this potential has the scale R ∼ 1/fπ ∼ 1/(
√
NcΛQCD), so that it is

much smaller than that of the standard nucleonic Skyrmion.

Perhaps it is easier to think about the pion field. In the linear limit when we
treat the nucleon field as a point source, the pion field satisfies the equation

−∇2πa =
1

fπ
∇iδ(3)(~r)〈σiτa〉, (12)

where σi is a Pauli matrix. This means that in lowest order, the pion field is
of the order of π ∼ fπ(1/rfπ)2. Higher corrections give

πσ = fπGσ(fπr). (13)

This is to be compared to that for the pion field of the Skyrme model

πSkyrme = fπGSkyrme(ΛQCDr). (14)

We see that in the Skyrme case, that π/fπ ∼ 1 for r ∼ 1/ΛQCD while for the
sigma model this occurs at the much smaller distance scale r ∼ 1/fπ.

The axial vector coupling gA is estimated from the pion behavior at long
distance, gA ∼ f 2

πR
2, where R is the size of the pion could [2]. In the Skyrme

case, gA ∼ f 2
π/Λ

2
QCD ∼ Nc, while in the sigma model gA ∼ f 2

π/f
2
π ∼ 1.

There are several subtleties in extracting the result for the Skyrmion case.
Note that for any solution with a size scale R� 1/ΛQCD, the argument which
led to the Skyrme term has broken down. For such solutions, the Skyrme term
itself is very small compared to the zeroth order non-linear sigma model contri-
bution at the size scale 1/ΛQCD. This is because in addition to the derivatives,
there are four powers of the field, which are very small. Nevertheless, there
should be a breakdown of the Skyrmion model at such a scale, arising from
QCD corrections of the underlying theory. The sigma model solution sits at
a distance scale small compared to where the Skyrmion action is applicable,
and one should ask what is the nature of the corrections to the Skyrme model
action at such distance scales. In addition, there is good room for skepticism
about the Skyrme model treatment of the nucleon. In the Skyrme model,
1/e2 ∼ Nc, but phenomenologically is is of the order 3 × 10−2. If we were to
naively take parametrically 1/e2 ∼ 1, the nucleon-nucleon force of the Skyrme
model would be parametrically the same as that in the sigma model. The mass
would not be correct however as it would be of order fπ. In later sections we
will see that this picture has features of what we have in mind: a string vertex
whose size is 1/fπ, surrounded by a cloud of quarks.
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4 What Might Be Wrong with the Skyrme Term?

What might be wrong with the Skyrme model solution other than it it is not
consistent with the sigma model? Is there any problem with internal inconsis-
tency? When attempts were made to derive the Skyrme term from QCD, one
found a Skyrme term which was generated, but also other terms [13–16]. When
these terms were added together and only terms of fourth order in derivatives
were retained, the Skyrmion was found to be unstable to collapse. If this ten-
dency to collapse were maintained to all orders, then the Skyrmion might
collapse to sizes much less than the QCD distance scale. One could not de-
scribe the nucleon within the conventional assumptions of the Skyrme model.
(Strictly speaking, the Skyrme model comes from derivative expansion and
keeping only lowest order terms is justified only when size scales R� 1/ΛQCD

are considered.)

One can ask whether or not higher order terms might stabilize the Skyrmion.
Following Refs. [13–16], we postulate that such corrections are generated by
a quark determinant in the presence of a background pion field. We might
hope that such a description would be valid down to a scale of Skyrmion size
of order 1/fπ. It is at this scale that high order terms in the pion nucleon
sigma model generate quantum corrections which are large. This is also the
natural size scale for a pion since pion-pion interactions are of order 1/Nc, and
even deep inelastic scattering off of a pion is suppressed by 1/Nc. Interactions
with other mesons are suppressed by 1/Nc. If we assume that the quark-pion
interaction is parameterized by a vertex that is pointlike to a distance scale of
order 1/fπ, then this interaction strength is of order gπQQ ∼ 1/

√
Nc, then one

finds a contribution to the Skyrme term that is leading order in Nc. This is
because there are Nc quark loops. Evaluating the leading term in the derivative
expansion of the pion field, there is the Skyrme term plus two others, that have
signs that cause the Skyrmion to collapse. (It should be noted that the intrinsic
size scale over which quarks are distributed inside the meson is more likely
1/ΛQCD, and the small apparent size of the pion arises from the nature of
interactions of these quarks in the large Nc limit, rather than their intrinsic
scale of spatial distribution.)

Subsequent to this [17], it was argued that in chiral soliton models, that the
chiral soliton is stable against collapse when the full quark determinant is com-
puted. This happens when there are bound fermions in the presence of a non-
trival background field, and the energy of the bound quarks is included. This
suggests that the Skyrmion could be metastable if all orders in the fermion
determinant are included.

We shall argue below that the Skyrmion at a size scale R ∼ 1/ΛQCD is ab-
solutely unstable. Sufficiently small Skyrmions, R � 1/ΛQCD always collapse
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and they have an energy parametrically small compared to that of the nucleon.

The quark contribution to the non-linear sigma model action modifies the
non-linear sigma model by

δS = Nc ln{det(−i/∂ +MU)}. (15)

Here the quark mass M is the constituent quark mass. We now use Weinberg’s
trick to rewrite this as a coupling a to an axial-vector background field that
is a pure gauge transform of vacuum:

Aµ5 =
1

i
V 1/2∂µV −1/2. (16)

Here V 1/2 is a function of the pion field and is a unitary matrix. The deter-
minant becomes

δS = Nc ln(det(
1

i
γµ(∂µ − γ5Aµ5) +M)). (17)

In the lmit there M = 0, the fermion determinant is gauge invariant. This
means that all functions of A generated by the determinant are gauge invariant
and they vanish when evaluated on Aµ5 which is a gauge transformation of
vacuum field.

Now for fields that are slowly varying, this determinant may be computed
by the method of Refs. [13–16]. This yields the result that in leading order
the Skyrmion collapses. We also see that if the Skyrmion is parametrically
small compared to the scale size of ΛQCD, we can ignore the mass term in
the fermion propagator, and no potential is generated to resist the collapse
of the Skyrmion. Since a Skyrmion with size much less than 1/ΛQCD has an
energy arising from the non-linear sigma model contribution to the action
that is parametrically small compared to NcΛQCD, the Skyrmion is absolutely
unstable.

It should be noted that it would be very difficult to resist the collapse on very
general grounds. The collapse is prevented by fields that are singular at short
distances. It is very difficult to generate such singular terms on scale sizes
much less than 1/ΛQCD since QCD interactions are typically spread out on a
distance scale of order 1/ΛQCD. The exception to this is pion self-interactions,
which are presumably special because the pion is a Goldstone boson. The
reason for a lack of a short distance singularity on scale sizes much less than
1/ΛQCD is that the nucleonic core is color singlet and interactions that would
produce a 1/r singularity would need to couple to a non-zero color charge. The
evasion to this conclusion arises from quark kinetic energies. If the quarks were
confined to a size scale which is very small would generate a 1/R term.
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5 The String Vertex Model and a Collapsed Skyrmion

If the Skyrmion is unstable against collapse, a reasonable conjecture for its
minimum size is when quantum corrections to the non-linear sigma model for
the pions is large, when R ∼ 1/fπ. This limiting size can be understood from
the Skyrme model itself. Recall that the energy of a Skyrmion of size R is

E =
∫

d3x

[
f 2
π

16
tr ∇U∇U †

]
∼ f 2

πR. (18)

Here we have ignored the possibility of a Skyrme term, since for small Skyrmions,
we have argued there is no such term. The energy of each constituent of the
Skyrmion is 1/R, so that the number of quanta in the Skyrmion is

N = f 2
πR

2. (19)

For a Skyrmion of sizeR ∼ 1/ΛQCD this isN ∼ Nc For the collapsed Skyrmion,
where R ∼ 1/fπ, N ∼ 1. This is the limit where the quantum nature of the
Skyrmion cannot be ignored.

The obvious problem with the collapsed Skyrmion is that it has a size paramet-
rically small compared to 1/ΛQCD. On such size scales, surely quark degrees
of freedom are important. Since quarks carry a conserved charge they cannot
be collapsed to small sizes without paying a price in kinetic energy E ∼ 1/R,
and so to keep the baryon mass from growing larger than NcΛQCD, the quarks
cannot be compressed to smaller than the QCD scale. Therefore if there is
some remnant of the collapsed Skryrmion it must include quarks and quark-
antiquark pairs at the QCD size scale. It is in these degrees of freedom that
the energy of the nucleon must reside. The collapsed Skyrmion can only have
an energy of order fπ and so does not contribute much to the energy.

How can this picture of the nucleon be consistent with that of the quark
model? Imagine that the nucleon is produced by the operator

OB(x) =
∫

d3x1 · · · d3xNq
a1(x1)Ua1,b1(x1, x) · · · qaN (xN)UaN ,bN (xN , x)εb1,··· ,bN .

(20)
Here, a path ordered phase along some path that connects the quark operator
and the position of the baryon is denoted by U(x, y). This operator is the
topologicial baryon number operator of Veneziano [25]. It is shown pictorially
in Fig. 3.

In this picture, quarks are joined together by lines of colored flux tubes at a
central point. The quark operators are at a distance of order 1/ΛQCD away
from the central point. We can identify the central point as the place where
the baryon number sits. This is natural if we think about hadronizing mesons
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qN

q1 q2

q3

q4
q5

Fig. 3. The topological baryon number operator of Veneziano.

along the lines of color flux. This happens by quark-antiquark pairs and so
it is ambiguous to think about the baryon number as either centered at the
multiple string junction or at the ends of the strings. As far as baryon number
is concerned, there is a symmetry between thinking about the baryon as made
of quarks or as a topological object is a fundamental dualism of the theory:
We can either think about the baryon number as being delocalized on quark
degrees of freedom. This is reflected in Cheshire Cat models of the baryon
[31,32].

In fact, it is easy to see that the degree of localization of the strong vertex is
the same as that of the collapsed Skyrmion. Let us identify the string vertex
position with the average center of mass coordinate of the quarks,

~R =
1

Nc

(~r1 + · · ·+ ~rNc). (21)

We work in a frame where 〈~ri〉 = 0. The typical dispersion in the position of

the center of the string is therefore 〈~R2〉 ∼ 〈~r 2
1 〉/Nc = 1/f 2

π . In the Skyrmion
picture, one imagines the collapsed Skyrmion as corresponding to the string
junction and having a high average density of baryon number in a localized
region, a picture that is dual to the quark model description.

The topological string model generates lines of colored electric flux from the
position of the string vertex. This presumably results in linear confinement of
the quarks at distances far from the vertex. Close to the vertex, each quark
feels a strong color Coulombic interactions that can be computed as the mean
field of the color Coulombic fields of the other quarks. The Coulombic energy
of all the quarks would be of order Nc/R times the ’t Hooft coupling, and the
kinetic energy for relativistic quarks would be of order Nc/R. The quarks sit
at R ∼ 1/ΛQCD in order not to make the nucleon energy larger than NcΛQCD.
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6 The Quark Distributions

The picture above does not directly resolve the problems associated with a
large axial-vector coupling or large matrix elements of the vector isospin cur-
rents. To understand what happens, we will take the non-relativistic quark
model as a starting point. We will consider a matrix element of the non-
relativistic expression of axial-vector current, q̄γ5γ3τ3q, which takes the form

〈N |R3|N〉 ≡ 〈N |
Nc∑
q=1

I
(q)
3 S

(q)
3 |N〉, (22)

where the operator O(q) acts on q-th quark wavefunction contained in nucleon
wavefunctions.

In nonrelativistic limit, spins can characterize the irreducible representation
of Hamiltonian, so wavefunctions can be characterized as |color〉 ⊗ |flavor〉 ⊗
|spin〉 ⊗ |space〉. Since color is totally antisymmetric, we should totally sym-
metrize spin-flavor-space wavefunction.

The frequently used construction of baryon wavefunctions is to use spin and
isospin singlet diquark wavefunctions [33]. We will denote a number of diquark
pair as nd. We take a direct product of such a diquark state (and an extra
quark if Nc odd), then totally symmetrize spin-flavor-space wavefunctions. In
this construction, Nc = 2nd baryon is a spin-isospin singlet, while spin-isospin
quanta of Nc = 2nd + 1 baryon is solely determined by an extra quark. There
is nothing nontrivial when we compute matrix elements related to spin and
isospin operators.

The situation differs for the computation of 〈R3〉. The reason is that both of
diquark and nucleon states are not eigenstates of R3, in contrast to spin and
isospin. Below we will see this explicitly in terms of SU(2Nf) representation
of states.

To compute 〈R3〉, it is useful to use representations of the nonrelativistic
SU(4) symmetry [34]. The SU(4) algebra is formed by the following fifteen
generators

Ta =
∑
q

I
(q)
3 , Sj =

∑
q

S
(q)
j , Raj =

∑
q

T (q)
a S

(q)
j , (23)

where j = 1, 2, 3 and a = 1, 2, 3. The Cartan subalgebra of SU(4) is formed by
three generators I3, S3 and R3 ≡ R33, and states are characterized by eigenval-
ues of these generators and the dimension D of the irreducible representations.
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We will denote such a state as |I3, S3, R3;D〉. In the following we often omit
D as far as it brings no confusions.

As a preparation, let us express our spin-isospin singlet diquark state in terms
of SU(4) representations. It can be expressed as

|D〉= 1

2

{
|u↑ d↓〉+ |d↓ u↑〉 − |u↑ d↓〉 − |d↓ u↑〉

}
= |0, 0, 1/2〉TS − |0, 0,−1/2〉TS, (24)

where the subscript TS means that wavefunctions are totally symmetrized.
Note that the diquark wavefuntion has an eigenvalue of definite 3-component
of isospin and spin, while it is a mixture of different R3 eigenstates. This is
the origin to make computations of 〈N |R3|N〉 nontrivial.

Now we first argue simpler case, Nc = 2nd nucleons. Such nucleons are char-
acterized by states with isospin and spin zero, while they are mixture of states
with different R3 eigenvalues. We assume that spatial wavefunctions are com-
mon for all quarks, so that spin-flavor (SF) wavefunctions of our nucleons
are obtained by totally symmetrizing a direct product of diquark’s spin-flavor
wavefunctions:

|N〉SF
2nd

=
{(
|0, 0, 1/2〉 − |0, 0,−1/2〉

)nd}
TS
. (25)

If we use SU(4) expressions and omit subscripts on isospin and spin compo-
nents (since they are zero),

|N〉SF
2nd

=
∣∣∣nd

2

〉
TS
− ndC1

∣∣∣nd
2
− 1

〉
TS

+ · · ·+ (−1)nd
∣∣∣−nd

2

〉
TS

=
[nd/2]∑
m=0

(−1)mndCm

{∣∣∣nd
2
−m

〉
TS

+ (−1)nd
∣∣∣− (nd

2
−m

)〉
TS

}
, (26)

where [nd/2] equals to nd/2 (nd/2− 1) for nd even (odd) case. Now it is easy
to see

R3|N〉SF
2nd

=
[nd/2]∑
m=0

(−1)mndCm ×
(nd

2
−m

)
×
{∣∣∣nd

2
−m

〉
TS

+ (−1)nd+1
∣∣∣− (nd

2
−m

)〉
TS

}
. (27)

Note that relative sign in the second term is flipped after R3 operation. This
gives 〈N |R3|N〉SF

2nd
= 0 due to cancellations for each indices m.
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From the above discussion, we saw that the matrix element of R3 vanishes not
because nucleon states have small R3, but because cancellations occur among
contributions from different eigenstates. Such cancellations are subtle, and
strongly depend on the fact that Nc is even. Once we consider Nc odd baryons
by adding one extra quark with the same spatial wavefunction as others, this
situation completely changes: terms which avoid cancellations lead to a huge
value, 〈N |R3|N〉SF

2nd+1 = (Nc + 2)/12. So we now come back to the original
problem, a large value of gA.

However, a comparison of Nc odd and even baryons suggests us the following
way to avoid a large gA. In the above, we always assume all quarks occupy
the same spatial wavefunction. Here let us see what happens when we adopt
a spatial wavefunction for the unpaired quark which is different from that of
quarks paired into diquarks.

We call spatial wavefunction of quarks inside of diquark as A(~r), and that of
an extra quark as B(~r). If we introduce a quantity x which characterizes the
overlap between wavefunction A and B,

x ≡ |〈A|B〉| =
∣∣∣ ∫ d~rA∗(~r)B(~r)

∣∣∣, (28)

then the expectation value of R3 in the |p↑〉 state is

〈p↑ |R3|p↑〉SFS =
1

12

(Nc − 1)(Nc + 6)x2 + 12

(Nc − 1)x2 + 4
. (29)

The derivation is a little bit cumbersome, so we give it in Appendix A.

Let us see the physical implications of this result. First the reason why x2, not
x, appears is that a permutation of A and B always makes two 〈A|B〉. For
instance, 〈AAB|ABA〉 = x2.

For x = 1, the matrix element reproduces conventional result, (Nc + 2)/12, as
it should.

On the other hand, for x = 0, or when A and B are completely orthogonal
each other, the cancellations analogus to Nc = 2nd baryon take place among
the diquark part, so that 〈R3〉 is merely characterized by R3 for the leftover
quark, 1/4.

To get gA of ∼ N0
c , x must be of order of 1/Nc. Note also that gA is of order

Nc until the overlap x ∼ 1/
√
Nc. This means that in order to reduce gA from

∼ Nc, the overlap must be very small. This disparity in wavefunctions suggests
the term “dichotomous” baryon.
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7 Why Small Overlap?

Apparently the above small gA baryon are not energetically favored in the
shell model picture of quarks. But so far we did not take into account the
contributions from fields surrounding valence quarks. They affects the nucleon
self-energy via virtual mesonic loops (polarization effects of the media). If the
axial charge of the valence quark is ∼ Nc, such a large charge induces a big
change in the effective mass.

As argued above, we expect that the mass of the baryon is affected by a large
value of Nc. A leading contribution to the gA dependent self-energy comes
from the vertex ∂µπa/fπ × gAN̄γµγ5τaN , and it generates g2

A/f
2
π ∼ Nc for

gA ∼ Nc [11] (no additional Nc dependence arises from nucleon propagator.)
We would expect other vector mesons might generate similar self-energies
through coupling to the axial-vector current. From this self-energy dependence
and the x2 dependence of gA, we suggests that self-energy effects generate a
term like

HgA ∼ Nc | ψpaired |2 | ψunpaired |2, (30)

in the effective Hamiltonian for the valence quarks. Let us minimize this ef-
fective term. Since there are of order Nc paired quarks, deforming their wave-
functions costs a lot of energy. However, deforming the wavefunction of the
unpaired quark only costs an energy of order ΛQCD, while the gain in HgA is
∼ Nc.

This deformation is most easily accomplished by having the unpaired quarks
exist in the region outside of the paired quarks. The paired quark wavefunction
in a string model falls as exp (−κ(rΛQCD)3/2) at large distances. If the unpaired
quark is excluded, due to its hard core interaction with the paired quarks, from
a size scale r ≤ ln2/3(Nc)/ΛQCD, then gA can be reduced.

How large is the reduction in gA? If the self-energy is of order g2
A/Nc, then we

would expect that when gA ∼
√
Nc, the trade off in energy associated with

deforming the unpaired quark wavefunction is balanced by self-energy effects.
Such a reduction most likely allows for a phenomenologically acceptable large
Nc limit.

Magnetic moments have been computed in Appendix B, and are proportional
to gA. Magnetic interactions will be of order αemg

2
A, so that for sufficiently

large Nc ∼ 1/αem, these effects would also work toward reducing gA to a value
of order 1.

It is also possible that a large value of gA might mean even more singular
self-energy terms for large Nc resulting is a greater reduction of gA. For ex-
ample, there might in principle be effects that contribute to the energy that
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correspond to higher powers than linear in Nc when gA ∼ Nc. These terms
will tend to further reduce the parametric dependence of gA upon Nc. We
have not been able to find a compelling argument for such effects from strong
interactions, though.

We turn next to a discussion of the splitting between the nucleon and the ∆.
In a conventional non-relativistic quark model, there is a SU(2Nf) symmetry
which requires the N −∆ masses to be equal to ∼ ΛQCD. This degeneracy is
split by color hyperfine interaction,

∑
i 6=j

Vss(~rij) ∼
λ

Nc

∑
i 6=j

~Si · ~Sj
MiMj

δ( ~rij); (31)

λ = g2Nc, and the Mi ∼ 1 are constituent quark masses. Assuming all quark
masses are the same, the expectation value for a state with spin S is

〈
∑
i 6=j

Vss(~rij)〉 ∼
λ

Nc

[
S(S + 1)− 3

4
Nc

]
× |φrelative(~0)|2

M2
. (32)

Masses are split by the first term. If the difference in spins is ∼ 1, as for
the nucleon and the ∆, the mass splitting is ∼ 1/Nc. This agrees with the
Skyrme model, identifying the ∆ as the first spin excitation of the nucleon.
More general arguments can be found in [11,35].

In contrast, there is no SU(2Nf) symmetry in the model of a Dichotomous
Baryon. The masses of the nucleon and the ∆ are not nearly degenerate, but
split ∼ ΛQCD. This arises from polarization effects via the axial coupling of
the ∆, g∆A.

Consider what a dichotomous ∆, with I3 = S3 = 3/2, is like. This can be
obtained by breaking apart one diquark pair:

|D〉 −→ |D′〉 =
1√
2

{
|u↑ u↑〉+ |u↑ u↑〉

}
= |1, 1, 1/2〉TS. (33)

Suppose that these |u ↑〉 occupy the same spatial wavefunctions as those in
the diquark pairs. Then g∆A is ∼ Nc, and ∆ has a large vacuum polarization
of ∼ Nc. As with the unpaired quark in the nucleon, this can be avoided by
putting both u quarks into a spatial wavefunction which is orthogonal to that
of the paired quarks. This costs an excitation energy ∼ ΛQCD, not ∼ ΛQCD/Nc.
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If M∆ −MN ∼ ΛQCD and g∆NA ∼ 1, the width of the ∆ is

Γ∆ ∼
g2

∆NA

f 2
π

(
M2

∆ −M2
N

M∆

)3

∼ g2
∆NA

Nc

ΛQCD . (34)

Thus whether g∆NA is ∼ 1 or ∼ √Nc, the ∆ remains a narrow resonance at
large Nc. We note that in QCD, the ∆ is not broad, Γ∆ ∼ 118MeV [36]. By
the Adler-Weisberger relation [37], gA is of the same order as g∆NA [38].

8 Summary and Conclusions

In order to temper the growth of gA for large Nc, we have argued that the
unpaired and paired quarks in a nucleon wavefunction exist in approximately
non-overlapping regions. Hence the name Dichotomous Baryon. While this
proposal appears radical, we note that we are only changing the wave function
of a one quark out of Nc. This proposal also solves related problems in the
phenomenology of baryons at large Nc. While our proposal might well generate
other problems which we have not anticipated, perhaps it is worth further
consideration. Our conjecture of a Dichotomous Baryon can be tested through
lattice simulations of baryons at large Nc [39]; for example, simulations in the
quenched approximation with five colors might be adequate to address the
change of gA with Nc.
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A Computation of gA

The purpose of this appendix is to reproduce a well-known results of 〈R3〉 =
1/4 × (Nc + 2)/3 for Nc odd nucleons which is composed of nonrelativistic
quarks occupying the same space wavefunction. We will also extend this result
to the case with different space wavefunctions.

If we assume that all quarks have the same space wavefuntion, we have only to
completely symmetrize spin-flavor wavefunctions to satisfy the Pauli’s princi-
ple. Here we will consider |p↑〉 which, in our consturction, takes the form:

|p ↑〉SF =
{(
|0, 0, 1/2〉 − |0, 0,−1/2〉

)nd ⊗ |u↑〉}
TS
. (A.1)

As in the text, we will omit third component of spin and isospin of the diquark
wavefunction for notational simplicity. The expression is

|p↑〉SF =
nd∑
m=0

(−1)mndCm

{∣∣∣nd
2
−m

〉
⊗ |u↑〉

}
TS

. (A.2)

First we have to give a correct normalization. It is crucial to count a num-
ber of independent states which are contained in maximally symmetrized R3

eigenstates.

For instance, |u ↑ u ↑ u ↑〉TS has only one independent state, and degeneracy
factor 3! for symmetrization, so 〈u ↑ u ↑ u ↑ |u ↑ u ↑ u ↑〉TS = (3!)2 = 36. On
the other hand, |u ↑ u ↑ d ↑〉TS has three independent states and degeneracy
factor 3!/3 = 2!, so 〈u↑ u↑ d↑ |u↑ u↑ d↑〉TS = 3× (2!)2 = 12.

Since our diquark state |0, 0, 1/2〉 contains (u↑, d↓) and |0, 0,−1/2〉 contains
(u ↓, d ↑), a state {|nd/2 − m〉 ⊗ |u ↑〉}TS includes (nd − m + 1) number of
u↑, (nd −m) number of d↓, and m number of u↓ and d↑. This state can be
written in the following way:

{∣∣∣nd
2
−m

〉
⊗ |u↑〉

}
TS

= D(nd −m+ 1;nd −m;m;m)
{
|u↑, ...〉+ ...

}
, (A.3)

where D(nd −m + 1;nd −m;m;m) = (nd −m + 1)!(nd −m)!(m!)2 is a de-
generacy factor coming from multiple counting of the same quarks. A number
of independent states in the bracket, C(nd − m + 1;nd − m;m;m), is given
by a number of permutation (2nd + 1)! devided by degeneracy factor D. From
these observations, we get
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〈(nd
2
−m

)
⊗ u↑

∣∣∣(nd
2
−m

)
⊗ u↑

〉
TS

= D2 × C = (2nd + 1)!×D. (A.4)

Now normalization factor of |p↑〉SF can be computed as

〈p↑ |p↑〉SF = (2nd + 1)!
nd∑
m=0

(ndCm)2 ×D(nd −m+ 1;nd −m;m;m)

= (2nd + 1)!(nd!)
2 × (nd + 1)(nd + 2)

2
. (A.5)

Now computation of 〈p ↑ |R3|p ↑〉SF is straightforward. We have only to mul-
tiply an eigenvalue (nd/2−m+ 1/4) when we take the sum of m,

〈p↑ |R3|p↑〉SF = (2nd + 1)!
nd∑
m=0

(nd
2
−m+

1

4

)
× (ndCm)2 ×D

= (2nd + 1)!(nd!)
2 × (nd + 1)(nd + 2)(2nd + 3)

24
. (A.6)

Using Nc = 2nd + 1, we reproduce the well-known result, 〈p ↑ |R3|p ↑〉SF/〈p ↑
|p↑〉SF = (Nc + 2)/12.

Next we little bit extend the results to the case where all diquark wavefunc-
tions occupy the same space wavefunction, A(~r), while extra quark occupies
a different space wavefunction, B(~r). In such a case, it is no longer useful
to separate treatments of spin-flavor and space. Rather we will totally sym-
metrize spin-flavor-space (SFS) wavefunctions with explicitly expressing space
dependence in such a way that |u↑, A〉, |u↑, B〉,.., and so on.

Here we introduce a quantity x which characterizes the overlap between wave-
function A and B,

x ≡ |〈u↑, A|u↑, B〉|, (A.7)

We will consider the following nucleon states

|p↑〉SFS =
nd∑
m=0

(−1)mndCm

{∣∣∣nd
2
−m,A

〉
⊗ |u↑, B〉

}
TS

. (A.8)

where
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{∣∣∣nd
2
−m,A

〉
⊗ |u↑, B〉

}
TS

= D(nd −m;nd −m;m;m)×
{
|u↑, A; · · · ;u↑, B〉+ ...

}
. (A.9)

We distinguish |u ↑, A〉 and |u ↑, B〉, so that, compared to previous case, the
degeneracy factor D decreases by a factor 1/(nd −m + 1) while a number of
independent states C increases by a factor (nd −m+ 1).

Now to see how nonzero overlap of A and B arises, let us take the innner-
product of braket in (A.9):

{
〈u↑, A; · · · ;u↑, B|+ ...

}{
|u↑, A; · · · ;u↑, B〉+ ...

}
= C(nd −m;nd −m;m;m)×

{
1 + x2 × (nd −m)

}
. (A.10)

The first term comes from diagonal matrix elements, while second term comes
from offdiagonal terms. (Perhaps the simplest way to determine a coefficient
of x2 is to see that x = 1 reproduce the previous results (A.4) ).

Remaining calculations are just a repetition of the previous calculations. A
normalization factor is

〈p↑ |p↑〉SFS = (2nd + 1)!
nd∑
m=0

(ndCm)2 ×D(nd −m;nd −m;m;m)

×
{

1 + x2(nd −m)
}

= (2nd + 1)!(nd!)
2 × (nd + 1)(x2nd + 2)

2
, (A.11)

which of course reproduces previous results for x = 1. And also the expectation
value of R3 is

〈p↑ |R3|p↑〉SFS = (2nd + 1)!
nd∑
m=0

(ndCm)2 ×D(nd −m;nd −m;m;m)

×
{

1 + x2(nd −m)
}
× (nd/2−m+ 1/4)

= (2nd + 1)!(nd!)
2 × (nd + 1)(2n2

dx
2 + 7ndx

2 + 6)

24
, (A.12)

Finally, taking into account the normalization factor, we get

〈p↑ |R3|p↑〉SFS

〈p↑ |p↑〉SFS
=

2n2
dx

2 + 7ndx
2 + 6

12(x2nd + 2)
=

1

12

(Nc − 1)(Nc + 6)x2 + 12

(Nc − 1)x2 + 4
. (A.13)
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B Magnetic Moments

The purpose of this section is to give a relationship between 〈R3〉 and magnetic
moments:

µN = 〈N |
[∑

u

µuS
(u)
3 +

∑
d

µdS
(d)
3

]
|N〉. (B.1)

We assume |N〉 for spin↑ case in the following. By introducing isospin projec-
tor, the sum of (u, d) indices can be extended, so we can rewrite the sum in
terms of total spin and R3 operators,

µN = 〈N |
[∑

q

µuS
(q)
3

(1

2
+ I

(q)
3

)
+
∑
q

µdS
(q)
3

(1

2
− I(q)

3

)]
|N〉

=
µu + µd

2
〈N |

∑
q

S
(q)
3 |N〉+ (µu − µd)〈N |

∑
q

R
(q)
3 |N〉

=
(µu + µd)± gA(µu − µd)

4
, (B.2)

where + (−) signs for protons (neutrons).

Assuming consistuent masses of (u, d) quarks are almost same, and using Q =
I3 +B/2 = I3 + 1/2Nc, we denote quark magnetic moments Qµ̄ ≡ Qe/2Mq:

µu =
Nc + 1

2Nc

µ̄, µd = −Nc − 1

2Nc

µ̄. (B.3)

Therefore proton and neutron magnetic moments are

µp,n =
µ̄

4

(
1

Nc

± gA
)
. (B.4)

For conventional baryon wavefunctions, Nc = 3 and gA = 5/3, which gives
µn/µp = −2/3 (exp:−0.685). For our wavefunction with x2 = 0, gA = 1 and
µn/µp = −1/2 (−1) for Nc = 3 (∞).
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